头部背景图片

The 134th Canton Fair Hongling Exhibition Ended Successfully

2025-06-16

Thank you for being a part of our oven exhibition! Your presence and active participation made this event truly remarkable. We've witnessed incredible innovation and explored the latest advancements in oven technology together.

Here are some photos from our exhibition site. Continue to welcome everyone to visit our factory.





Advantages of Gantry Shears

2025-06-12

Here are the key benefits of a metal gantry shear, capturing its essential value in fabrication:

 

1.Unmatched Precision & Clean Cuts: Gantry shears deliver exceptionally straight, burr-minimized cuts with tight tolerances. The rigid frame and precise blade alignment ensure perpendicularity and dimensional accuracy critical for downstream processes like welding and assembly, eliminating rework and scrap.

 

2. High Efficiency & Throughput: Designed for heavy, long materials, they rapidly process large sheets, plates, or bars in a single stroke. CNC integration allows for automatic backgauge positioning and repetitive cutting sequences, dramatically outpacing manual methods or smaller shears, optimizing production flow.

 

3. Superior Material Handling: The integrated moving gantry (bridge) with powerful clamping holds material firmly *throughout* the cut. This prevents slippage, distortion, or marking on sensitive surfaces (like pre-painted sheets) and allows safe, controlled handling of large, heavy, or awkward workpieces.

 

4. Exceptional Versatility: Capable of cleanly shearing a vast range of materials (mild steel, stainless, aluminum) and thicknesses (from thin gauge up to several inches/dozens of mm), as well as various profiles (sheets, plates, flats, angles - with appropriate tooling). Adjustable blade gaps and rake angles enhance this adaptability.

 

5. Enhanced Operator Safety: Automation reduces direct handling near the cutting blade. Features like light curtains, two-hand controls, and guarded moving parts significantly lower risks compared to manual cutting or less sophisticated machinery, creating a safer workshop environment.

 

6. Material Savings & Reduced Waste: Precise programming and nesting optimization (often integrated with CNC) minimize offcuts and maximize material yield from expensive stock. Clean cuts reduce the need for secondary edge finishing.

 

7. Robust Durability & Low Maintenance: Built from heavy-duty steel for immense structural integrity, gantry shears are engineered for decades of demanding service. Their fundamental shearing mechanism is mechanically robust and generally requires less complex maintenance than high-energy beam processes like lasers or plasma.

 

8. Strong Return on Investment (ROI): While a significant capital investment, the combined benefits – reduced labor costs, minimized material waste, faster throughput, lower rework/scrap, improved safety, and extended lifespan – deliver a compelling ROI, making it a cornerstone machine for serious metal fabricators.

 

In essence: The metal gantry shear is the silent titan of the shop floor. It transforms raw stock into accurately sized blanks with speed, precision, and safety that manual methods or smaller equipment simply cannot match. Its strength, versatility, and efficiency directly translate into lower production costs, higher quality output, and a more competitive operation, solidifying its status as an indispensable asset for any high-volume or precision-focused metal fabrication facility.

A high and low temperature humidity test chamber

2025-06-10

A high and low temperature humidity test chamber is a device used to test the performance of products in high temperature, low temperature or humid and hot environments. It is widely used in the testing of aerospace products, information electronic instruments and meters, materials, electrical appliances, electronic products, and various electronic components.

high and low temperature humidity test chamber 

Basic Working Principle:

❖ Box structure: usually made of stainless steel or other corrosion-resistant materials, the internal space is used to place the sample under test, and the external control panel and display are installed.

❖ Temperature and humidity control system: including heater, refrigeration system (single stage, double stage or stacked refrigeration), humidification and dehumidification device, as well as sensors and microprocessors to ensure that the temperature and humidity in the box is precisely controllable.

❖ Air circulation system: built-in fans promote air circulation in the box to ensure uniform temperature and humidity distribution.

❖ Control system: microcomputer or PLC controller is used. Users can set the required temperature, humidity and test time through the operation interface, and the system will automatically execute and maintain the set conditions.

 

Lab Companion was established on May 4, 2005, and is a national high-tech enterprise headquartered in Dongguan, Guangdong Province. The company has two major R&D and manufacturing facilities in Dongguan and Kunshan, covering a total area of 10,000 square meters. It produces approximately 2,000 environmental test equipment units annually. The company also operates sales and maintenance service centers in Beijing, Shanghai, Wuhan, Chengdu, Chongqing, Xi 'an, and Hong Kong. Hongzhan has always been dedicated to the technology of environmental test equipment, continuously striving for excellence to create reliability that meets international standards. Its customers span various industries, including electronics, semiconductors, optoelectronics, communications, aerospace, machinery, laboratories, and automotive. From product development to after-sales service, every step is guided by the customer's perspective and needs.

 

Cold and hot shock test chamber maintenance method

2025-06-10

1. The condenser (or radiator) of the refrigeration unit in the cold and heat shock test chamber should be regularly maintained to ensure it remains clean. Dust that adheres to the condenser can cause the compressor's high-pressure switch to trip, leading to false alarms. The condenser should be cleaned monthly using a vacuum cleaner to remove dust from the condenser's cooling mesh, or after turning on the machine, use a hard-bristled brush to clean it, or blow away the dust with a high-pressure air nozzle.

2. When opening or closing the door or taking the test object from the furnace, do not let the item touch the rubber edge on the door to prevent the rubber edge from being damaged and shortened life.

3. Keep the ground around and under the fuselage clean at all times to avoid accidents and performance degradation caused by large amounts of dust being sucked into the unit.

4. The freezing system of the cold and hot shock test chamber is the core of this machine. Please inspect all copper tubes for leakage and snow conditions every half a year, as well as all nozzles and welding joints. If there is oil leakage, please inform the company or deal with it directly.

5. The large current contact of the distribution panel should be cleaned and repaired at least once a year in the distribution room. The loosening of the contact will make the whole equipment work in a risky state. At best, it will burn out the components, and at worst, it will cause fire, alarm and personal injury. When cleaning, use a vacuum cleaner to remove the dust in the room.

6. Do not adjust the setting value of the two over-temperature protectors in the power distribution box of the cold and hot shock test chamber casually. It has been adjusted at the factory. This protective switch is used to protect the heating tube from empty burning and alarm. The setting point = temperature setting point 20℃~30℃.

7. Cold and hot shock test chamber When the test product is taken when the time arrives, it must be in the off state and the staff must wear dry, anti-electricity and temperature-resistant gloves to take and put the product.

8. Clean and maintain the inside and outside of the cold and heat shock test chamber. 9. Before operating the cold and heat shock test chamber, remove any internal impurities. 10. The electrical distribution room should be cleaned at least once a year. When cleaning, use a vacuum cleaner to remove dust. The exterior of the chamber must be cleaned at least once a year, using soapy water for wiping.

 environmental test equipment manufacturers

High and low temperature humidity test chamber Application

2025-06-10

High and low temperature humidity test chamber plays an important role in many industries due to its powerful environmental simulation ability. The following is an overview of its main application industries:

❖ Aerospace is used to test the performance of aircraft, satellite, rocket and other aerospace components and materials under extreme temperature and humidity conditions.

❖ Test the stability and reliability of electronic components, circuit boards, displays, batteries and other electronic products in high temperature, low temperature and humidity environment.

❖ Evaluate the durability of automotive components such as engine parts, electronic control systems, tires, and coatings in harsh environments.

❖ Defense and military use environmental adaptability tests of military equipment and weapon systems to ensure their normal operation under a variety of climatic conditions.

❖ Material science research on the heat resistance, cold resistance and moisture resistance of new materials, as well as their physical and chemical properties under different environmental conditions.

❖ Energy and environmental assessment of the environmental adaptability and weather resistance of new energy products such as solar panels and energy storage equipment.

❖ Transportation test of the performance of components of vehicles, ships, aircraft and other transportation vehicles in extreme environments.

❖ Biomedical testing of the stability and effectiveness of medical devices and drugs under changes in temperature and humidity.

❖ Quality inspection is used for environmental testing and certification of products in the product quality control center.

 

High and low temperature humidity test chamber helps enterprises and institutions in the above industries to ensure that their products can operate normally in the expected use environment by simulating various extreme conditions that may be encountered in the natural environment, so as to improve the market competitiveness of products.

 

Introduction to the characteristics of rapid temperature change test chamber equipme

2025-06-10

The rapid temperature change test chamber is suitable for aerospace products, information and electronic instruments, materials, electrical and electronic products, and various electronic components to test the performance indicators of products under the condition of rapid temperature change.

Characteristics of the rapid temperature change test chamber: 1. The chamber is designed with advanced and rational structure, featuring internationally advanced products and functional components that meet long-term, stable, safe, and reliable production needs. It meets the processing and production requirements for these applications, is user-friendly in terms of operation, maintenance, and use, has a long service life, an attractive design, and a user-friendly interface that simplifies and enhances the user's operational and monitoring experience.

2. The main components of the equipment are selected from high-quality products of well-known international brands to ensure the quality and performance of the whole machine.

3. Perfect equipment performance and easy to operate man-machine dialogue function.

4. Have independent intellectual property rights and design patents and master the core technology of environmental test chamber.

5. The control instrument adopts the original Japanese imported "Youyikong" UMC1200, which can be monitored remotely.

6. The refrigeration system adopts the original French Taikang compressor unit, and is equipped with condensate water tray.

7. Core electrical components are all imported well-known brands such as Schneider.

8. Follow the advanced design concept of foreign environmental test equipment, and separate water and electricity.

9. Shallow tank humidification, novel and unique, drawer water adding method, super large tank design.

10. The bottom of the studio adopts drainage groove design to prevent steam condensation and maximize the protection of test workpiece.

11. The lighting system adopts philips kit, and the observation window adopts funnel-shaped design to provide a wider field of view.

12. Unique leakage protection design for safer operation.

key points of choosing high and low temperature test chamber

2025-06-10

Eight key points of choosing high and low temperature test chamber:

1.No matter whether it is selected for high and low temperature test chamber or other test equipment, it should meet the temperature conditions specified in the test requirements;

2.To ensure the uniformity of temperature in the test chamber, forced air circulation or non-forced air circulation mode can be selected according to the heat dissipation of samples;

3.The heating or cooling system of the high and low temperature test chamber shall have no effect on the samples;

4.The test chamber should be convenient for the relevant sample rack to place samples, and the sample rack will not change its mechanical properties due to high and low temperature changes;

5. High and low temperature test chamber should have protective measures. For example: there are observation window and lighting, power disconnection, over-temperature protection, various alarm devices;

6. Whether there is remote monitoring function according to customer requirements;

7. The test chamber must be equipped with automatic counter, indicator light and recording equipment, automatic shutdown and other instrument devices when carrying out the cyclic test, and it must have good recording and display functions;

8.According to the sample temperature, there are two measurement methods: upper wind and lower wind sensor temperature. The position and control mode of temperature and humidity control sensor in the high and low temperature test chamber can be selected according to the customer's product test requirements to select the appropriate equipment.

environmental test chambers manufacturers

 

Operation details of high and low temperature humidity test chamber

2025-06-10

The high and low temperature, humidity, and heat test chamber employs a balanced temperature and humidity control method to achieve precise environmental conditions. It features stable and balanced heating and humidification capabilities, enabling high-precision temperature and humidity control at high temperatures. Equipped with an intelligent temperature regulator, the chamber uses a color LCD touch screen for temperature and humidity settings, allowing for various complex program settings. The program settings are set through a dialogue interface, making the operation simple and quick. The refrigeration circuit automatically selects the appropriate cooling mode based on the set temperature, enabling direct cooling and temperature reduction in high-temperature conditions. The base is constructed from welded channel steel into a grid frame, ensuring it can support the weight of the chamber and personnel under horizontal conditions without causing unevenness or cracking on the bottom surface. The chamber is divided into six surfaces and a double or single-opening door. The inner shell is made of stainless steel plate, while the outer shell is made of color-coated steel plate. The insulation medium is polyurethane rigid foam, which is lightweight, durable, and resistant to impact. The door is also made of color-coated steel plate, with handles designed for both internal and external opening, allowing test personnel to freely open the door from inside the enclosed chamber. This test chamber can record and trace the entire testing process, with each motor equipped with overcurrent protection and short-circuit protection for the heater, ensuring high reliability during operation. It is equipped with USB interfaces and Ethernet communication functions, meeting customers' diverse needs for communication and software expansion. The popular refrigeration control mode reduces energy consumption by 30% compared to the traditional heating balance control mode, saving energy and electricity. The chamber typically consists of a protective structure, air duct system, control system, and indoor testing framework. To better ensure the temperature reduction rate and temperature specifications of the high and low temperature humidity test chamber, a cascade refrigeration unit, which uses imported refrigeration compressors, is selected. This type of refrigeration unit offers advantages such as effective coordination, high reliability, and easy application and maintenance. When using this system, certain details should not be overlooked. What are these details?

1. Strictly abide by the system operation rules to avoid others violating the system operation rules.

2. Non-technical personnel are not allowed to disassemble and repair this machine. If disassembly and repair are required, the operation shall be carried out under the condition of ensuring power off and accompanied by personnel for supervision to avoid accidents.

3. When opening or closing the door or taking or putting the test object out of the test chamber, do not let the test object contact with the rubber edge of the door or the edge of the box to prevent the rubber edge from being worn.

4, the surrounding ground should be kept clean at any time, so as not to suck a lot of dust into the unit to deteriorate working conditions and reduce performance.

5. Attention should be paid to protection during use, and it should not be collided with sharp or blunt objects. The test products placed in the laboratory should be kept at a certain distance from the suction and exhaust air outlets of the air conditioning channel to avoid hindering the air circulation.

6. Prolonged inactivity can reduce the system's effective lifespan, so it should be powered on and operated at least once every 10 days. Avoid frequent short-term use of the system. After each operation, the system should not be restarted more than 5 times per hour, with each start-stop interval being at least 3 minutes. Do not open the door when it is cold to prevent damage to the door seal.

7. After each test, set the temperature near the ambient temperature, work for about 30 minutes, then cut off the power supply, and wipe clean the inner wall of the working room.

8. Regular cleaning of the evaporator (dehumidifier): Due to the different cleanliness levels of the samples, a lot of dust and other small particles will be condensed on the evaporator (dehumidifier) under the action of forced air circulation, so it should be cleaned regularly.

9. The condenser should be maintained regularly and kept clean. Dust sticking to the condenser will make the compressor dissipate heat poorly, resulting in high pressure switch jumping and generating false alarm. The condenser should be maintained regularly.

10. Regularly clean the humidifier to prevent scale buildup, which can reduce its efficiency and lifespan and cause blockages in the water supply lines. To clean it, remove the evaporator panel from the working chamber, use a soft brush to scrub the humidifier, rinse with clean water, and drain promptly. 11. Regularly check the test cloth of the wet bulb. If the surface becomes dirty or hard, replace it to ensure the accuracy of the humidity sensor's readings. The test cloth should be replaced every three months. When replacing it, first clean the water collection head, wipe the temperature sensor clean with a clean cloth, and then replace the test cloth. Ensure your hands are clean when replacing the new test cloth.

Reliability Environmental Testing A Comprehensive Guide(1)

2025-06-10

Introduction

Reliability testing is a critical process in the development and production of equipment, ensuring that devices meet specified performance standards under expected operating conditions. Depending on the test environment, reliability testing can be classified into laboratory testing and field testing. Laboratory reliability tests are conducted under controlled conditions, which may or may not simulate real-world scenarios, whereas field reliability tests are performed in actual operational environments.

 

Based on the objectives and stages of product development, reliability testing can be further divided into:

  • Reliability Engineering Tests (including Environmental Stress Screening (ESS) and Reliability Growth Testing) – aimed at identifying and eliminating faults, typically conducted during the development phase.
  • Reliability Statistical Tests (including Reliability Verification Tests and Reliability Measurement Tests) – used to validate whether a product meets reliability requirements or to estimate its reliability metrics, usually performed during development and production.

 

This article focuses on Reliability Statistical Testing, covering test procedures, methodologies, performance monitoring, fault handling, and reliability metric calculations.


1. General Test Plan and Requirements

(1) Pre-Test Preparation

Before conducting reliability testing, a Reliability Test Plan must be developed, leveraging existing test data to avoid redundancy. Key preparatory steps include:

  • Equipment Readiness: Ensure that the device under test (DUT), test equipment, and auxiliary instruments are properly configured and calibrated.
  • Environmental Stress Screening (ESS): The DUT should undergo ESS to eliminate early-life failures.
  • Test Review: A pre-test review should confirm that all conditions are met for a valid test.

 

(2) Comprehensive Environmental Test Conditions

The test environment should simulate real-world operational stresses, including:

  • Stress Combination: Sequential simulation of major stresses encountered in actual use.
  • Operating Conditions: The DUT should operate under typical workload and environmental conditions.
  • Standard Compliance: Test conditions should align with technical standards or contractual requirements.

 

(3) Statistical Test Plans and Selection

Two primary test plans are defined:

  • Fixed-Time Truncated Test Plan: Suitable when precise test duration and cost estimation are required.
  • Sequential Truncated Test Plan: Preferred when the producer’s and consumer’s risks (10%–20%) are acceptable, especially for high- or low-reliability devices or when sample sizes are small.

 

Sample Selection:

  • The DUT must be randomly selected from a batch produced under identical design and manufacturing conditions.
  • A minimum of two samples is recommended, though a single sample may be allowed if fewer than three units are available.

2. Types of Reliability Statistical Tests

(1) Reliability Qualification Test

Purpose: To verify whether the design meets specified reliability requirements.

Key Aspects:

  • Conducted under simulated operational conditions.
  • Requires representative samples of the approved technical configuration.
  • Includes test condition determination, fault classification, and pass/fail criteria.

 

(2) Reliability Acceptance Test

Purpose: To ensure that mass-produced devices meet reliability standards before delivery.

Key Aspects:

  • Performed on randomly selected samples from production batches.
  • Uses the same environmental conditions as qualification testing.
  • Includes batch acceptance/rejection criteria based on test results.

 

(3) Reliability Measurement Test

Purpose: To estimate reliability metrics such as failure rate (λ), mean time between failures (MTBF), and mean time to failure (MTTF).

Key Aspects:

  • No predefined truncation time; reliability can be estimated at any stage.
  • Statistical methods are used to compute point estimates and confidence intervals.

 

(4) Reliability Assurance Test

Purpose: An alternative to acceptance testing for highly reliable or mature products where conventional testing is impractical.

Key Aspects:

  • Conducted after ESS.
  • Focuses on fault-free operation duration (t).
  • Requires agreement between the manufacturer and customer.

Conclusion

Reliability environmental testing is essential for ensuring product durability and performance. By implementing structured test plans—whether qualification, acceptance, measurement, or assurance testing—manufacturers can validate reliability metrics, optimize designs, and deliver high-quality products.

Environmental reliability testing can be achieved through environmental test chambers, which simulate real-world conditions to evaluate product performance, significantly reducing testing time and improving efficiency.

Lab-Companion has over 20 years of expertise in manufacturing environmental test equipment. With extensive practical experience and on-site installation support, we help customers overcome real-world challenges in testing applications.

Requirements for the installation of the water spray test chamber

2025-06-10

This device differs from ordinary equipment, so the installation site must meet the following special requirements:

  1. The site must have ample space for the test equipment and sufficient maintenance area.
  2. The laboratory should be equipped with a water supply system.
  3.  The installation site should have ideal drainage facilities, such as ditches and outlets.
  4. The power supply for the device should have a good grounding system and a waterproof base and cover to prevent electrical leakage or electric shock due to water splashing onto the power source.
  5. The height of the installation site should allow the device to operate normally and facilitate future maintenance and repairs after installation.
  6. The annual temperature at the installation site should be maintained between 5-32℃, with a relative humidity not exceeding 85%, and there should be adequate ventilation.
  7. The installation should be in a dust-free environment.
  8.  The environmental temperature at the installation site should avoid sudden changes.
  9. The installation should be on a level surface (using a level to ensure it is level).
  10. The installation should be in a location away from direct sunlight.
  11.  The installation should be far from flammable materials, explosive materials, and high-temperature heat sources.
  12.  It is best not to install other equipment in the laboratory to prevent moisture-induced corrosion.
  13. Water source: municipal tap water。   
Tags